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1. Introduction

Investigations concerning the gaps between consecutive prime numbers have long
occupied an important position on the interface between additive and multiplicative
number theory. Perhaps the most famous problem concerning these gaps, the Twin
Prime Conjecture, asserts that the aforementioned gaps are infinitely often as small
as 2. Although a proof of this conjecture seems presently far beyond our reach (but
see [5] and [10] for related results), weak evidence in its favour comes from studying
unusually short gaps between prime numbers. Thus, while it follows from the Prime
Number Theorem that the average gap between consecutive primes of size about x
is around log x, it is now known that such gaps can be infinitely often smaller than
0.249 log x (this is a celebrated result of Maier [12], building on earlier work of a
number of authors; see in particular [7], [13], [3] and [11]). A conjecture weaker
than the Twin Prime Conjecture asserts that there are infinitely many gaps between
prime numbers which are powers of 2, but unfortunately this conjecture also seems
well beyond our grasp. Extending this line of thought, Kent D. Boklan has posed
the problem of establishing that the gaps between prime numbers infinitely often
have only small prime divisors, and here the latter divisors should be small relative
to the size of the small gaps established by Maier [12]. In this paper we show that
the gaps between consecutive prime numbers infinitely often have only small prime
divisors, thereby solving Boklan’s problem. It transpires that the methods which
we develop to treat Boklan’s problem are capable also of detecting multiplicative
properties of more general type in the differences between consecutive primes, and
this theme we also explore herein.

In order to describe our conclusions precisely we require some notation. We take
(pm)∞m=1 = (2, 3, 5, . . . ) to be the sequence of prime numbers, and throughout use
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the letters p, q and π to denote prime numbers. When n is a natural number, we
denote by P (n) the largest prime factor of n. It is convenient to describe an integer
n as being y-smooth when P (n) ≤ y. Finally, when k is a positive integer and N
is a positive real number, define

Z(N ; 2k) =
∑

1<p,q≤N
p−q=2k

(log p)(log q). (1.1)

In the current state of knowledge, of course, we are unable to establish an asymp-
totic formula for Z(N ; 2k). However, one may employ sieve methods to obtain an
upper bound of the correct order of magnitude. In this context, we note that it is
expected that

Z(N ; 2k) = E(k)N + o(N),

where
E(k) = S

∏
p|k
p>2

p− 1
p− 2

, (1.2)

and
S = 2

∏
p>2

(
1− (p− 1)−2

)
.

Our conclusions depend naturally on a constant C arising in the aforementioned
sieving problem, and since it is conceivable that this constant may be susceptible
to improvement, we formulate our results in terms of the following hypothesis.

Hypothesis H(C). Let ε and A be positive numbers, and let N be sufficiently large
in terms of ε and A. Then whenever k is a natural number with k < (log N)A, one
has

Z(N ; 2k) < (C + ε)NE(k).

We note that the proof of Theorem 2 of Bombieri and Davenport [3] shows that
the hypothesis H(C) holds with C = 4, and later work of Bombieri, Friedlander and
Iwaniec [4], and Fouvry and Grupp [8], may be used to establish that H(C) holds
with C = 3.5, and C = 3.454, respectively. Moreover, the truth of the conjectured
asymptotic formula (1.2) would imply that H(C) holds with C = 1.

We now announce our solution of Boklan’s problem, which we establish in §§2
and 3.

Theorem 1. Suppose that C is a positive number exceeding 1 for which the hy-
pothesis H(C) holds. Then one has the following conclusions.

(a) Whenever α is a real number with α > exp(−1/C), there are infinitely many
primes p and q with q < p and

P (p− q) < (log p)α.
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(b) Whenever β is a real number with β > exp(−1/(2C)), there are infinitely
many consecutive primes, pn and pn+1, with

P (pn+1 − pn) < (log pn+1)β .

In view of the remarks following the statement of the hypothesis H(C), we
have the unconditional conclusion that infinitely many gaps between primes of size
about x are (log x)3/4-smooth, and moreover that infinitely many gaps between
consecutive primes of size about x are (log x)7/8- smooth.

We are also able to establish the existence of chains of consecutive prime numbers
with the property that the difference between each pair of successive elements of
the chain is non-trivially smooth. Thus, in §4 we establish the following conclusion.

Theorem 2. Suppose that C is a positive number exceeding 1 for which the hy-
pothesis H(C) holds. Let r be a natural number with r ≥ 2. Then one has the
following conclusions.

(a) Whenever γr is a real number with γr > exp(−1/(2Cr2)), there are infinitely
many chains (pn, pn+1, . . . , pn+r) of consecutive primes with

P
( r∏

i=1

(pn+i − pn+i−1)
)
< (log pn+r)γr .

(b) Write

Ar = 1
2

(
2C − 1 +

2
r

+

√(
2C − 1 +

2
r

)2

− 4
r2

)
.

Then whenever δr is a real number with δr > exp
(
−1/(Arr

2)
)
, there are

infinitely many chains (pn, pn+1, . . . , pn+r) of consecutive primes with

P
( r∏

i=1

(pn+i − pn+i−1)
)
< (log pn+r)δr . (1.3)

In particular, when r is large, the conclusion (1.3) holds with

δr = exp
(
−1 + O(1/r)

(2C − 1)r2

)
.

Our methods are by no means limited to detecting smooth gaps between con-
secutive primes, and in principle one is at liberty to impose almost any mild mul-
tiplicative constraint on the gaps. By way of illustration, in §5 we establish that
there are infinitely many 5-free gaps between consecutive primes.
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Theorem 3. There are infinitely many consecutive primes, pn and pn+1, with the
property that for no prime π does one have π5|(pn+1 − pn).

As a final illustration of the scope of the methods of this paper, in §6 we discuss
erratic behaviour amongst consecutive gaps.

Theorem 4. There is a positive number δ with the property that, for infinitely
many natural numbers n, one has either

pn+2 − pn+1

pn+1 − pn
> 1 + δ or

pn+2 − pn+1

pn+1 − pn
< 1− δ.

Moreover, there is a positive number ω such that, for infinitely many natural num-
bers n, one has

|pn+2 − 2pn+1 + pn| > ω log pn.

Since, on average, one has pn+2−pn+1 = (1+o(1))(pn+1−pn), the first conclusion
of Theorem 4 shows that, infinitely often, a gap between consecutive primes is
either significantly larger, or significantly smaller, than its predecessor. We note
that one may take δ = 0.0045 in the first conclusion of Theorem 4. Presumably, by
making use of the most modern sieve estimates, it would be possible to increase the
permissible choices for δ, but we have not pursued such matters in this paper. The
second conclusion of Theorem 4 shows that the second order differences between
consecutive prime numbers are infinitely often “large”. A priori, there is no reason
to suppose that the second order gaps are even as large as (log x)ε for primes of
size about x. As should be evident from the discussion of §6, the methods we
develop are capable of showing that for any fixed natural number r, the rth order
differences between consecutive prime numbers of size about x are infinitely often
�r log x. In the interests of concision, we do not discuss the latter application
in detail, confining ourselves herein to merely illustrating such ideas in Theorem 4
above.

The basic strategy implicit in the proof of Theorems 1, 2 and 3 is simple to
describe. We first obtain an ample supply of gaps between primes of size not much
larger than the average gap. Such a supply of gaps is guaranteed by the work of
Bombieri and Davenport [3], and indeed the latter already suffices for our proof
of Theorem 1(a). In order to establish conclusions concerning consecutive primes,
we are forced to make some elementary observations concerning the distribution
function of the consecutive gaps. We then employ the upper bound embodied in
the hypothesis H(C) to estimate the number of such gaps divisible by a given
modulus 2k. Thus, by summing the contributions from a number of such moduli,
we are able to detect weak multiplicative properties by engineering an elementary
sieving procedure.

Throughout this paper ε denotes a sufficiently small positive number, and im-
plicit constants in the notations of Landau and Vinogradov depend at most on ε,
the parameter r, and the hypothetical constant C, unless stated otherwise. As is
usual, we denote the number of primes at most x in size by π(x).
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2. Smooth gaps between prime numbers

We begin our investigations concerning the gaps between prime numbers by es-
tablishing Theorem 1(a). In so doing we take advantage of the opportunity to record
several estimates useful in later sections. The following result of Bombieri and Dav-
enport [3] yields a supply of typical prime gaps sufficient for our deliberations in
this section.

Lemma 2.1. Suppose that ε and A are fixed positive numbers, and that N is a
positive real number sufficiently large in terms of ε and A. Then whenever k is a
positive number with 1 ≤ k ≤ (log N)A, one has

∑
1≤n≤k

(
1− n

k

)
Z(N ; 2n) > N

∑
1≤n≤k

(
1− n

k

)
E(n)−

(
1
4

+ ε

)
N log N. (2.1)

Proof. This is immediate from [3, Theorem 1], on taking t(n) = 1− |n|/k.

Fortunately, the sum on the right hand side of the inequality (2.1) is easily
estimated by exploiting the smoothing factor, and making use of another result of
Bombieri and Davenport [3].

Lemma 2.2. For each positive number k, one has∑
1≤n≤k

E(n) = 2k + O((log(2k))2)

and ∑
1≤n≤k

(1− n/k)E(n) = k + O((log(2k))2).

Proof. Bearing in mind our modest adjustments to the notation of [3], the first
assertion of the lemma follows from [3, equation (33)]. By partial summation,
moreover,

∑
1≤n≤k

(1− n/k)E(n) =
1
k

∑
1≤ν≤k−1

∑
1≤n≤ν

E(n) =
1
k

∑
1≤ν≤k−1

(
2ν + O((log(2ν))2)

)
,

and thus the second assertion of the lemma follows immediately from the first.

Next we estimate the contribution to the left hand side of (2.1) arising from
those n possessing a prime divisor exceeding some parameter D.

Lemma 2.3. Suppose that C is a positive number exceeding 1 for which the hy-
pothesis H(C) holds. Let ε and A be fixed positive numbers. Suppose that N is a
positive number sufficiently large in terms of ε and A, and that k is a real number



6 BALOG, BRÜDERN AND WOOLEY

with 1 ≤ k ≤ (log N)A. Then whenever D is a real number with 2 ≤ D ≤ k, one
has∑

p>D

∑
1≤n≤k

p|n

(
1− n

k

)
Z(N ; 2n) < (C + ε)Nk

(
log
(

log k

log D

)
+ O

(
1√

log D

))
.

Proof. For each prime number p with p > 2, it follows from the hypothesis H(C)
that ∑

1≤n≤k
p|n

(
1− n

k

)
Z(N ; 2n) =

∑
1≤m≤k/p

(
1− pm

k

)
Z(N ; 2pm)

< (C + ε)N
∑

1≤m≤k/p

(
1− pm

k

)
E(pm).

(2.2)

But in view of (1.2), one has∑
1≤m≤k/p

(
1− pm

k

)
E(pm) ≤ S

∑
1≤m≤k/p

(
1− pm

k

) p− 1
p− 2

∏
π|m
π>2

π − 1
π − 2

=
p− 1
p− 2

∑
1≤m≤k/p

(
1− pm

k

)
E(m),

whence by Lemma 2.2,

∑
1≤m≤k/p

(
1− pm

k

)
E(pm) ≤ p− 1

p− 2

(
k

p
+ O

(
(log(2k/p))2

))
. (2.3)

Next one observes that a well-known version of the Prime Number Theorem with
error term (see, for example, [6]) yields the estimates

∑
D<p≤k

p− 1
p(p− 2)

= log
(

log k

log D

)
+ O

(
1

log D

)
, (2.4)

and ∑
D<p≤k

p− 1
p− 2

(log(2k/p))2 =
∑

D<p≤k(log k)−2

p− 1
p− 2

(log(2k/p))2

+
∑

k(log k)−2<p≤k

p− 1
p− 2

(log(2k/p))2

�k(log(2k))2

(log k)3
+

k(log log(3k))2

log k
. (2.5)
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On combining (2.2)-(2.5), therefore, we deduce that∑
p>D

∑
1≤n≤k

p|n

(
1− n

k

)
Z(N ; 2n)

< (C + ε)Nk

(
log
(

log k

log D

)
+ O

(
1

log D
+

1√
log k

))
,

and the desired conclusion follows immediately.

We note that the error term occurring in the conclusion of Lemma 2.3 could be
sharpened with somewhat greater effort. However, such would be surplus to our
requirements.

Equipped now with the apparatus necessary for performing the sieving alluded
to in the introduction, the proof of Theorem 1(a) may be swiftly disposed of. We
suppose that C is a positive number exceeding 1 for which the hypothesis H(C)
holds, and that ε is a positive number sufficiently small in terms of C. Write
α = exp(−1/(C + 2ε)), take N to be a real number sufficiently large in terms of ε,
and take also k = ε−2 log N and D = (log N)α. By Lemma 2.1 we have∑

1≤n≤k
p|n⇒p≤D

(
1− n

k

)
Z(N ; 2n) >N

∑
1≤n≤k

(
1− n

k

)
E(n)−

(
1
4

+ ε

)
Nkε2

−
∑
p>D

∑
1≤n≤k

p|n

(
1− n

k

)
Z(N ; 2n). (2.6)

Thus, on applying Lemma 2.2 to estimate the first sum on the right hand side of
(2.6), and estimating the second such sum by recourse to Lemma 2.3, we obtain∑

1≤n≤k
p|n⇒p≤D

(
1− n

k

)
Z(N ; 2n) > Nk

(
1− ε2 − (C + ε) log

(
log k

log D

)
+ O

(
1√

log D

))

≥ Nk
(
1− 2ε2 + (C + ε) log α

)
>

εNk

2C
. (2.7)

In order to complete the proof of Theorem 1(a), it remains only to show that
the D-smooth gaps supplied by (2.7) do not correspond exclusively to excessively
small primes. However, by applying Lemma 2.2 in combination with the hypothesis
H(C), it follows that for each large number M one has∑

1≤n≤k

(
1− n

k

)
Z(M ; 2n) < (C + ε)Mk + O

(
M(log(2k))2

)
.

Consequently, on taking M = εN/(8C2), we deduce from (2.7) that∑
1≤n≤k

p|n⇒p≤D

(
1− n

k

)
(Z(N ; 2n)− Z(M ; 2n)) >

εNk

2C
− 2CMk =

εNk

4C
.
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We therefore conclude that there exist D-smooth values of n for which there exist
primes p and q with q < p ≤ N and p > εN/(8C2), and satisfying the equation p−
q = 2n. Since D ≤ (log p)α+ε, the conclusion of Theorem 1(a) follows immediately.

3. Smooth gaps between consecutive prime numbers

In the remainder of this paper we restrict attention to gaps between consecutive
prime numbers. In order to adapt the ideas of the previous section to successfully
analyse such gaps, we require information concerning the distribution function for
these gaps. When n is a natural number, we denote by dn the nth prime gap
dn = pn+1 − pn. We fix x to be some large real number, and when Λ is a non-
negative real number, we define the distribution function fx(Λ) by

fx(Λ) =
log x

x
card{n ∈ N : dn > Λ log x and pn+1 ≤ x}.

Lemma 3.1. The function fx(Λ) has the following properties:
(i) for each fixed x one has that fx(Λ) is a piecewise continuous function of Λ

which is monotonic decreasing on [0,∞),
(ii) for each Λ ∈ [0,∞), one has 0 ≤ fx(Λ) ≤ 1 + O(1/ log x),
(iii) one has

∫∞
0

fx(Λ)dΛ ≤ 1,
(iv) whenever r is a natural number and ε is a positive number with ε < 1, there

exists a real number Λε, with ε ≤ Λε ≤ 2r + 2ε, which satisfies the property
that

fx(Λε) ≤
1
r

(
1− Λε

2r + 2ε

)
.

Proof. That fx(Λ) is piecewise continuous and monotonic decreasing on [0,∞), and
that fx(Λ) ≥ 0 for each Λ, is immediate from the definition of fx(Λ). Thus the
property (i) claimed in the lemma holds true. In order to establish property (ii) we
have merely to observe that, as a consequence of a familiar version of the Prime
Number Theorem with error term (see [6]), one has

fx(Λ) ≤ log x

x

∑
pn+1≤x

1 = 1 + O(1/ log x).

Also, it follows from the definition of fx(Λ) that∫ ∞

0

fx(Λ)dΛ =
log x

x

∫ ∞

0

∑
dn>Λ log x

pn+1≤x

1dΛ

=
log x

x

∑
pn+1≤x

∫ dn/ log x

0

dΛ =
1
x

∑
pn+1≤x

dn ≤ 1,

and so property (iii) holds.
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In order to establish property (iv), we consider the function

gr(Λ) =

{
1
r

(
1− Λ

2r+2ε

)
, when 0 ≤ Λ ≤ 2r + 2ε,

0, otherwise,

and observe that, in view of the conclusion of part (iii) of the lemma, one has∫ 2r+2ε

ε

(fx(Λ)− gr(Λ)) dΛ ≤
∫ ∞

0

fx(Λ)dΛ−
∫ 2r+2ε

ε

gr(Λ)dΛ

≤ 1− 1
2r

(2r + ε)
(

1− ε

2r + 2ε

)
= − ε2

4r(r + ε)
< 0.

Consequently, for some real number Λε with ε ≤ Λε ≤ 2r + 2ε, one has fx(Λε) <
gr(Λε), and the desired conclusion follows immediately.

Before advancing to prove Theorem 1(b), we pause to convert the hypothesis
H(C) into an unweighted version more convenient for the application at hand.
When k is a positive integer, define

Z∗(N ; 2k) =
∑

1<p,q≤N
p−q=2k

1. (3.1)

Lemma 3.2. Suppose that C is a positive number exceeding 1 for which the hypoth-
esis H(C) holds. Let ε and A be positive numbers, and let N be sufficiently large
in terms of C, ε and A. Then whenever k is a natural number with k < (log N)A,
one has

Z∗(N ; 2k) < (C + ε)E(k)N(log N)−2.

Proof. With the hypotheses of the statement of the lemma, it follows from (1.1)
that whenever k < (log N)A, one has∑

N(log N)−3<p,q≤N
p−q=2k

1 ≤
(
log(N(log N)−3)

)−2 ∑
1<p,q≤N
p−q=2k

(log p)(log q)

< (C + 1
2ε)E(k)N(log N)−2

(
1 + O

(
log log N

log N

))
.

(3.2)

On the other hand, again from (1.1),∑
1<p,q≤2N(log N)−3

p−q=2k

1 ≤
∑

1<p,q≤2N(log N)−3

p−q=2k

(log p)(log q) < 2(C + ε)E(k)N(log N)−3.

(3.3)
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On combining (3.2) and (3.3), therefore, we find that the conclusion of the lemma
follows from (3.1).

We are now equipped to prove Theorem 1(b). Suppose that C is a positive
number exceeding 1 for which the hypothesis H(C) holds. Let ε be a positive
number sufficiently small in terms of C, and let x be a real number sufficiently
large in terms of ε and C. Then according to Lemma 3.1, there is a real number
Λε, with ε ≤ Λε ≤ 2 + 2ε, which satisfies the property that

fx(Λε) ≤ 1− Λε

2 + 2ε
.

It therefore follows from the definition of the function fx(Λ), together with a version
of the Prime Number Theorem with error term, that

∑
dn≤Λε log x

pn+1≤x

1 = π(x)− 1− fx(Λε)
x

log x

≥ Λε

2 + 2ε

x

log x
+ O

(
x

(log x)2

)
. (3.4)

We next estimate the number of the gaps of size at most Λε log x which are
divisible by large primes. Let D be a real parameter with 2 ≤ D ≤ Λε log x. Then
by Lemma 3.2,

∑
D<p≤Λε log x

∑
dn≤Λε log x

pn+1≤x
p|dn

1 ≤
∑

D<p≤Λε log x

∑
1≤k≤Λε log x

2p

Z∗(x; 2kp)

< (C + ε)
x

(log x)2
∑

D<p≤Λε log x

∑
1≤k≤Λε log x

2p

E(kp).
(3.5)

But by (1.2) and Lemma 2.2, one has

∑
1≤k≤Λε log x

2p

E(kp) ≤ S
∑

1≤k≤Λε log x
2p

p− 1
p− 2

∏
π|k
π>2

π − 1
π − 2

=
p− 1
p− 2

∑
1≤k≤Λε log x

2p

E(k)

≤ p− 1
p− 2

(
Λε log x

p
+ O

(
(log ((Λε log x)/p))2

))
.

(3.6)
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Thus, on substituting (3.6) into (3.5), and making use of the Prime Number The-
orem as in the argument leading to (2.4) and (2.5), we obtain∑
D<p≤Λε log x

∑
dn≤Λε log x

pn+1≤x
p|dn

1

< (C + ε)Λε
x

log x

∑
D<p≤Λε log x

(
p− 1

p(p− 2)
+ O

(
(log((Λε log x)/p))2

log x

))

= (C + ε)Λε
x

log x

(
log
(

log(Λε log x)
log D

)
+ O

(
1√

log D

))
. (3.7)

Finally, on taking

α = exp
(
− 1

2(1 + ε)(C + 2ε)

)
and D = (log x)α, and collecting together (3.4) and (3.7), we obtain∑

dn≤Λε log x
pn+1≤x

p|dn⇒p≤D

1 ≥ Λε

2 + 2ε

x

log x

(
1 + 2(1 + ε)(C + ε) log α + O

(
(log log x)−1/2

))

=
Λε

2 + 2ε

x

log x

ε

C + 2ε

(
1 + O

(
(log log x)−1/2

))
.

On recalling that Λε ≥ ε, therefore, we conclude that∑
dn≤Λε log x

pn+1≤x
p|dn⇒p≤D

1 >
ε2x

3C log x
. (3.8)

The proof of Theorem 1(b) will be completed on accounting for the contribution
of the small primes. But the Prime Number Theorem shows that∑

dn≤Λε log x
pn+1≤ε3x
p|dn⇒p≤D

1 ≤ π(ε3x) <
2ε3x

log x
, (3.9)

whence by (3.8), ∑
dn≤Λε log x
ε3x<pn+1≤x
p|dn⇒p≤D

1 >
ε2x

4C log x
.

Consequently, there exist D-smooth values of dn for which pn+1 > ε3x. Since
D ≤ (log pn+1)α+ε, the conclusion of Theorem 1(b) is immediate.
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4. Chains of smooth gaps between consecutive primes

It is evident that the approach described in the previous section can be modified
so as to demonstrate the existence of chains of smooth gaps between consecutive
primes, provided that one has sufficient knowledge concerning upper bounds for
the number of solutions to simultaneous gap problems. Such simultaneous prob-
lems, unfortunately, are not well understood, and so we are forced to sidestep such
difficulties with some elementary observations concerning fx(Λ).

Lemma 4.1. Suppose that C is a positive number exceeding 1 for which the hy-
pothesis H(C) holds. Then one has the following.

(i) For each positive number ε with ε ≤ 1/(2C), whenever x is sufficiently large
in terms of C and ε, one has for ε ≤ Λ ≤ 1/(C + ε),

fx(Λ) > 1− (C + ε)Λ.

(ii) Suppose that r is a natural number with r ≥ 2, and ε is a positive number
with ε ≤ 1/(2C). Write Cε = C(1 + 3ε), and define Br by

Br = 1
2 (C + ε)

2Cε − 1 +
2
r
−

√(
2Cε − 1 +

2
r

)2

− 4
r2

 . (4.1)

Then there exists a real number Λε, with

1
C + ε

≤ Λε ≤
1

rBr
,

which satisfies the property that

fx(Λε) ≤
1
r
−BrΛε.

Proof. Suppose that C is a real number exceeding 1 for which the hypothesis H(C)
holds. We start by applying Lemma 3.2 to obtain, for each positive number Λ,∑

dn>Λ log x
pn+1≤x

1 = π(x)− 1−
∑

dn≤Λ log x
pn+1≤x

1

≥ π(x)− 1−
∑

1≤d≤ 1
2Λ log x

Z∗(x; 2d)

> π(x)− 1− (C + 1
2ε)

x

(log x)2
∑

1≤d≤ 1
2Λ log x

E(d).
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Then on applying the Prime Number Theorem with a suitable error term, we deduce
from Lemma 2.2 together with the definition of fx(Λ) that for ε ≤ Λ ≤ 1/(C + ε),

fx(Λ) =
log x

x

∑
dn>Λ log x

pn+1≤x

1 > 1− (C + 1
2ε)Λ + O((log x)−1/2),

whence part (i) of the lemma follows immediately.
In order to establish part (ii) of the lemma we consider the function gr(Λ) defined

by

gr(Λ) =


1− (C + ε)Λ, when 0 ≤ Λ ≤ 1/(C + ε),
1
r −BrΛ, when 1/(C + ε) < Λ ≤ 1/(rBr),
0, otherwise.

¿From Lemma 3.1(iii) together with part (i) of this lemma, we have

∫ ∞

1/(C+ε)

fx(Λ)dΛ =
∫ ∞

0

fx(Λ)dΛ−
∫ 1/(C+ε)

0

fx(Λ)dΛ

< 1−
∫ 1/(C+ε)

ε

(1− (C + ε)Λ) dΛ

< 1 + ε− 1
2(C + ε)

.

But then, on recalling (4.1), a modest computation reveals that

∫ 1/(rBr)

1/(C+ε)

fx(Λ)− gr(Λ)dΛ ≤
∫ ∞

1/(C+ε)

fx(Λ)dΛ−
∫ 1/(rBr)

1/(C+ε)

gr(Λ)dΛ

< 1 + ε− 1
2(C + ε)

− 1
2Br

(
1
r
− Br

C + ε

)2

= 1 + ε− 1
2(C + ε)

− 2Cε − 1
2(C + ε)

,

whence ∫ 1/(rBr)

1/(C+ε)

fx(Λ)− gr(Λ)dΛ < 0.

We may therefore conclude that for some Λε with 1/(C + ε) ≤ Λε ≤ 1/(rBr), one
has fx(Λε) < gr(Λε), and so part (ii) of the lemma follows.

We establish Theorem 2 following the trail laid down in §3. Suppose that C is a
real number exceeding 1 for which the hypothesis H(C) holds. Let r be a natural
number with r ≥ 2, let ε be a positive number sufficiently small in terms of r and C,
and let x be a real number sufficiently large in terms of r, ε and C. Then according
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to Lemma 4.1(ii), there is a real number Λε with 1/(C + ε) ≤ Λε ≤ 1/(rBr) (where
Br is defined as in (4.1)), which satisfies the property that

fx(Λε) ≤
1
r
−BrΛε.

It therefore follows from the definition of the function fx(Λ), together with a version
of the Prime Number Theorem with error term, that one has∑

dn+i−1≤Λε log x (1≤i≤r)
pn+r≤x

1 ≥ π(x)− r − rfx(Λε)
x

log x

≥ rBrΛε
x

log x
+ O

(
x

(log x)2

)
. (4.2)

Meanwhile, the number of consecutive r-tuples (dn, dn+1, . . . , dn+r−1) of gaps, in
which at least one of the dn+i−1 (1 ≤ i ≤ r) is divisible by a large prime, may be
estimated as follows. We take D to be a real parameter with 2 ≤ D ≤ Λε log x.
Then again making use of the Prime Number Theorem, it follows from (3.7) that∑

D<p≤Λε log x

∑
dn+i−1≤Λε log x (1≤i≤r)

pn+r≤x
p|dn+i−1 some i

1

≤ r
∑

D<p≤Λε log x

∑
dn≤Λε log x

pn+1≤x
p|dn

1

< r(C + ε)Λε
x

log x

(
log
(

log(Λε log x)
log D

)
+ O

(
1√

log D

))
.
(4.3)

Finally, on taking

δr = exp
(
− Br

C + 2ε

)
and D = (log x)δr , and combining (4.2) and (4.3), we deduce that∑

dn+i−1≤Λε log x (1≤i≤r)
pn+r≤x

p|dn+i−1⇒p≤D (1≤i≤r)

1 ≥ rBrΛε
x

log x

(
1 +

C + ε

Br
log δr + O

(
1√

log log x

))

=
εrBrΛε

C + 2ε

x

log x

(
1 + O(1/

√
log log x)

)
.

On recalling that Λε ≥ ε, therefore, we arrive at the conclusion∑
dn+i−1≤Λε log x (1≤i≤r)

pn+r≤x
p|dn+i−1⇒p≤D (1≤i≤r)

1 >
ε2rBrx

2C log x
.
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Moreover the estimate (3.9) may again be employed to discard the small primes
occurring in the latter sum, so that there exist chains (dn, dn+1, . . . , dn+r−1), with
pn+r > ε3x, and satisfying the property that whenever π|dn+i−1 then π ≤ D
(1 ≤ i ≤ r). Since D = (log pn+r)δr+ε, and

Br =
C + ε

1
2

(
2Cε − 1 + 2

r +
√(

2Cε − 1 + 2
r

)2 − 4
r2

)
r2

,

the main conclusion of part (b) of Theorem 2 follows immediately. Part (a) of
Theorem 2, meanwhile, follows from part (b) on noting that whenever r ≥ 2, one
has

Ar ≤ 2C − 1 + 2/r ≤ 2C.

Moreover, a simple expansion yields

Ar = 2C − 1 +
2
r

+ O

(
1
r2

)
,

thereby establishing the final assertion of Theorem 2(b).

5. The existence of k-free gaps between consecutive prime numbers

Since our methods fall short of showing that there are infinitely many 4-free
gaps between consecutive primes, in the interest of concision we will be crude in
our proof of Theorem 3. Suppose that C is a positive number exceeding 1 for
which the hypothesis H(C) holds. Let ε be a positive number sufficiently small in
terms of C, and let x be a real number sufficiently large in terms of ε and C. We
begin by noting that the lower bound (3.4) holds for some real number Λε with
ε ≤ Λε ≤ 2 + 2ε. Moreover, when k is a natural number with k ≥ 2, the number of
k-free prime gaps of size at most Λε log x is given by∑

dn≤Λε log x
pn+1≤x

mk|dn⇒m=1

1 ≥
∑

dn≤Λε log x
pn+1≤x

1−
∑

p

∑
dn≤Λε log x

pn+1≤x

pk|dn

1.

Thus we deduce from (3.4) and Lemma 3.2 that

∑
dn≤Λε log x

pn+1≤x

mk|dn⇒m=1

1 ≥ Λε

2 + 2ε

x

log x
−
∑

p

∑
1≤d≤ 1

2Λε log x

pk|2d

Z∗(x; 2d) + O

(
x

(log x)2

)

>
Λε

2 + 2ε

x

log x
− (C + ε)

x

(log x)2
Mk(x) + O

(
x

(log x)2

)
,

(5.1)
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where
Mk(x) =

∑
1≤d≤Λε log x

2k

E(2k−1d) +
∑
p>2

∑
1≤d≤Λε log x

2pk

E(pkd). (5.2)

Next we estimate Mk(x). By (1.2) and Lemma 2.2, it follows from (5.2) that

Mk(x) ≤
∑

1≤d≤Λε log x

2k

E(d) +
∑
p>2

pk≤ 1
2Λε log x

∑
1≤d≤Λε log x

2pk

p− 1
p− 2

E(d)

= 21−kΛε log x +
∑
p>2

pk≤ 1
2Λε log x

(
p− 1
p− 2

Λε log x

pk
+ O

((
log
(
p−kΛε log x

))2))

≤ ω(k)Λε log x + O((log x)1/2+ε), (5.3)

where
ω(k) = 21−k +

∑
p>2

p− 1
pk(p− 2)

.

We note, in particular, that when k ≥ 5, a modest computation reveals that ω(k) <
1/12. On substituting (5.3) into (5.1), therefore, we conclude that whenever k ≥ 2,
one has ∑

dn≤Λε log x
pn+1≤x

mk|dn⇒m=1

1 >
Λε

2 + 2ε

x

log x

(
1− (2 + 2ε)(C + ε)ω(k) + O((log x)ε−1/2)

)
.

Consequently, whenever C < 6 we deduce from the lower bound Λε ≥ ε that

∑
dn≤Λε log x

pn+1≤x

mk|dn⇒m=1

1 >
ε2x

3 log x
.

Since an estimate similar to (3.9) again shows that the small primes in the latter
sum are inconsequential, we may conclude that there are infinitely many 5-free gaps
between consecutive primes. This completes the proof of Theorem 3.

6. Inequitable consecutive prime gaps

We establish Theorem 4 through the use of another sieve estimate, which again
we formulate as a hypothesis. When h and k are positive integers, and N is a large
real number, we define

Z(N ; 2k, 2h) =
∑

1<p,q,r≤N
q=p+2h

r=p+2h+2k

1,
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in which the summation is over prime numbers p, q and r. In view of the prime
k-tuples conjecture of Bateman and Horn [2] (see also [1] for a discussion of this
conjecture), it is expected that

Z(N ; 2k, 2h) = (1 + o(1))E(k, h)N(log N)−3,

where

E(k, h) =
∏
π

(
1− 1

π

)−3(
1− ρ(π)

π

)
,

and ρ(π) denotes the number of solutions of the congruence

n(n + 2h)(n + 2h + 2k) ≡ 0 (mod π).

Hypothesis K(C). Let ε and A be positive numbers, and let N be sufficiently
large in terms of ε and A. Then whenever h and k are natural numbers with
max{h, k} < (log N)A, one has

Z(N ; 2k, 2h) < (C + ε)E(k, h)N(log N)−3.

By applying standard sieve methods it is possible to show that the hypothesis
K(C) holds for some fixed positive number C (indeed, [9, Theorem 5.7] shows that
C = 48 is permissible). Moreover, as may be verified with a little effort, there is a
positive number B with the property that for any fixed positive numbers ∆1 and
∆2 with ∆2 > ∆1, one has for each large number H the upper bound∑

1≤h≤H

∑
∆1h≤k≤∆2h

E(k, h) ≤ (∆2 −∆1)(B + o(1))H2. (6.1)

We note that while the expenditure of sufficient effort would establish that B = 4 is
permissible, the mere existence of such a number suffices for the proof of Theorem
4.

Before proceeding further, we require some additional information concerning
the distribution function fx(Λ).

Lemma 6.1. Whenever ε is a positive number with ε < 1, there exists a real
number Λε, with ε ≤ Λε ≤ 3

2 (1 + ε), which satisfies the property that

fx(Λε) ≤ 1− 4Λ2
ε

9(1 + ε)2
.

Proof. Consider the function b(Λ), defined by

b(Λ) =

{
1− 4Λ2

9(1+ε)2 , when 0 ≤ Λ ≤ 3
2 (1 + ε),

0, otherwise,
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and observe that, in view of Lemma 3.1(iii), one has

∫ 3(1+ε)/2

ε

fx(Λ)− b(Λ)dΛ ≤
∫ ∞

0

fx(Λ)dΛ−
∫ 3(1+ε)/2

ε

b(Λ)dΛ

< 1−
(

3
2 (1 + ε)− 1

2 (1 + ε)
)

+ ε = 0.

Thus, for some real number Λε with ε ≤ Λε ≤ 3
2 (1 + ε), one has fx(Λε) < b(Λε),

whence the lemma follows immediately.

We advance now to dispose of the proof of Theorem 4. Suppose that C is a
real number exceeding 1 for which the hypothesis K(C) holds. Let ε be a positive
number sufficiently small in terms of C, and let x be a real number sufficiently large
in terms of ε and C. Also, let δ be a small positive parameter to be chosen later.
By Lemma 6.1, there is a real number Λε, with ε ≤ Λε ≤ 3

2 (1 + ε), which satisfies
the property that

fx(Λε) ≤ 1− 4Λ2
ε

9(1 + ε)2
.

By the definition of the function fx(Λ), together with a version of the Prime Number
Theorem with error term, therefore, we have

∑
dn≤Λε log x

pn+1≤x

1 ≥ π(x)− 1− fx(Λε)
x

log x
≥ 4Λ2

ε

9(1 + ε)2
x

log x
+ O

(
x

(log x)2

)
. (6.2)

Let N0 denote the number of prime gaps dn counted in the latter sum, for which
the subsequent prime gap dn+1 satisfies |dn+1/dn − 1| ≤ δ. Then one has

N0 ≤
∑
p≤x

∑
1≤h≤ 1

2Λε log x
p+2h prime

∑
(1−δ)h≤k≤(1+δ)h

p+2h+2k prime

1, (6.3)

and so by combining (6.1) with the hypothesis K(C), we arrive at the estimate

N0 ≤ (C + ε)
x

(log x)3
∑

1≤h≤ 1
2Λε log x

∑
(1−δ)h≤k≤(1+δ)h

E(k, h)

≤ 1
2δ(C + ε)(B + ε)Λ2

ε

x

log x
. (6.4)

On recalling (6.2), we deduce from (6.3) and (6.4) that

∑
dn≤Λε log x

pn+1≤x
|dn+1/dn−1|>δ

1 ≥ 4Λ2
ε

9(1 + ε)2
x

log x

(
1− 9

8δ(C + ε)(B + ε)(1 + ε)2 + O(1/ log x)
)
.
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Consequently, whenever

δ <
8

9(C + ε)(B + ε)(1 + ε)2
,

one finds that ∑
dn≤Λε log x

pn+1≤x
|dn+1/dn−1|>δ

1 � x

log x
, (6.5)

where here the implicit constant may depend on δ, B and C. Again, by an estimate
similar to (3.9), one finds that the small primes provide a negligible contribution,
and thus we deduce that for infinitely many natural numbers n, one has |dn+1/dn−
1| > δ. This completes the proof of the first assertion of Theorem 4.

We remark that the choices C = 48 and B = 4 yield the conclusion that δ
is permissible whenever δ < 1/216, thereby justifying the assertion made in the
introduction.

Finally, we observe that whenever µ is a positive number, it follows from Lem-
mata 2.2 and 3.2 that ∑

dn≤µ log x
pn+1≤x

1 < 2(C + ε)µ
x

log x
,

whence, on taking µε to be a positive number sufficiently small in terms of ε and
δ, we deduce from (6.5) that ∑

µε log x≤dn≤Λε log x
pn+1≤x

|dn+1/dn−1|>δ

1 � x

log x
.

Thus we conclude that for infinitely many natural numbers n, one has dn ≥ µε log x,
pn+1 ≤ x, and

|dn+1 − dn| > δdn ≥ µεδ log x.

The second assertion of Theorem 4 follows immediately.
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